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What do neural networks learn 
 from their inputs?



Neural networks learn stereotypical features
First-layer filters learnt from ImageNet resemble Gabor filters across architectures

Convergence of features across architectures — 
inputs drive feature learning!

Krizhevsky, Sutskever, Hinton (2012)AlexNet

Guth & Ménard (2024)VGG-11 Tolstikhin et al. NeurIPS ’21MLP mixer
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DenseNet121



What is in an image?
A Fourier perspective

Xtt′￼
X̃kk′￼

= Akk′￼
exp (iϕkk′￼)
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What is in an image?
A Fourier perspective

Xtt′￼ X̃kk′￼
= Akk′￼

exp (iϕkk′￼)

Amplitudes  encode  
pair-wise correlations

Akk′￼
Phases  encode  

higher-order correlations
ϕkk′￼
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What matters in an image?
Let’s do an experiment to find out! (Piotrowski & Campbell ’82)

X̃kk′￼
= Akk′￼

exp (iϕkk′￼)Akk′￼
ϕkk′￼

X̃kk′￼
= Akk′￼

exp (iϕkk′￼)Akk′￼
ϕkk′￼

X̃kk′￼
= Akk′￼

exp (iϕkk′￼)Akk′￼
ϕkk′￼

X̃kk′￼
= Akk′￼

exp (iϕkk′￼)Akk′￼
ϕkk′￼

Higher-order correlations are perceptually more important!

Oppenheim & Lim (1981); Piotrowski & Campbell (1982); Wichmann et al. (2005) 

?
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HOCs shape neural representations
First layer filters relate to strongly non-Gaussian directions

4SGD steps

Higher-Order Correlations

kurt(λ) = 𝔼λ4 − 3𝔼λ2

λ = w(1) ⋅ x
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Neural networks learn features from 
non-Gaussian input fluctuations.

How can we analyse this?



A simpler model for learning
Finding “interesting” projections of data

Given a dataset  of -dimensional,  
zero-mean inputs

𝒟 = {x1, x2, …, xn} d w* := argmax|w|=1 𝔼𝒟 G(w ⋅ x)with identity covariance

G(s) = s4 − 3Independent Components (ICA)
Comon ’94; Bell & Sejnowski ’95; Oja & Hyvärinen ’00

Principal components (PCA) G(s) = s2
Pearson 1901

Translation-invariance of images 
=> Fourier components

The most non-Gaussian projections 
yield CNN-like filters !

G(s) = − e−s2/2
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Fundamental limits of ICA
A synthetic data model gives fundamental insights
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• Algorithmic threshold:  
(Auddy & Yuan ’24, Annals Apl Prob ’24 
Szekely, Bardone, Gerace & SG, NeurIPS ’24) 

• How do algorithms actually perform?

n ≳ d2

xμ = βgμu + wμ gμ = ± 1, wμ ∼ 𝒩 (0,1 − βuu⊤)

Independent Component Analysis

Spiked cumulant model:

How to analyse this problem?

ℒ(w) := 𝔼ℙ[G(w ⋅ x)] = 𝔼ℙ0
[G(w ⋅ x)ℓ(v ⋅ x)]

ℓ(s) :=
dℙ
dℙ0

(s)Likelihood ratio

𝔼xi = 0

𝔼xixj = δij

𝔼xixjxk = 0

𝔼xixjxkxℓ − 𝔼xixj𝔼xkxℓ[3] ∝ (u⊗4)ijkℓ

Goal of ICA  
= finding !u

PCA is 
useless!



ICML 2025 
arXiv:2503.23896



FastICA is slow in high dimensions
The most popular ICA algorithm needs a lot of data

FastICA Algorithm: {
w̃ t = 𝔼𝒟[x G′￼(wt−1 ⋅ x)] − 𝔼𝒟[G′￼′￼(wt−1 ⋅ x)]wt−1,
wt = w̃ t /∥ w̃ t∥.

G(s) := − e−s2/2

G(s) := 1/a log cosh(as)

xμ = βgμu + wμ gμ = ± 1, wμ ∼ 𝒩 (0,1 + βuu⊤)ICA model:
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FastICA is slow in high dimensions
The most popular ICA algorithm needs a lot of data
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FastICA as a full-batch fixed point iteration:  
analyse in the giant steps framework!  
(Ba et al. ’22; Damian et al. ’24; Dandi et al. ’24; Ben Arous et al. ’21)
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Theorem (informal).  
Take  samples. After one step of 
FastICA, the overlap  scales as 

n = dϑ

α



Speeding up ICA with SGD
Smoothing the landscape is the key!

Vanilla SGD (Ben Arous et al. JMLR ’21): recovers the spike in  steps.n = Ω(d3 log2 d)

8

overlap overlap overlap

Lo
ss

SGD on a smoothed loss 
Biroli, Cammarota, Ricci-Tersenghi J Phys A ’20 
Damian et al. NeurIPS ’23

ℒλ[G(w ⋅ x)] := 𝔼z∼μw
G ( w + λz

∥w + λz∥
⋅ x) λ ≥ 0



Speeding up ICA with SGD
Smoothing the landscape is the key!
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ℒλ[G(w ⋅ x)] := 𝔼z∼μw
G ( w + λz

∥w + λz∥
⋅ x)

Vanilla SGD (Ben Arous et al. JMLR ’21): recovers the spike in  steps.n = Ω(d3 log2 d)

λ ≥ 0

Generalised ODE for the overlap: 
(accounting for data/contrast fn mismatch)

m′￼(t) =
m(t)

dk*1 −k*2 /2k*1 −k*2 /2k*2

• Speed-up requires fine-tuning of “activation” function! 

• Optimal choice for spiked cumulant is .  
Matches LDLR bound! 

• Trade-off: stability vs. speed!

He4(s)

SGD on a smoothed loss 
Biroli, Cammarota, Ricci-Tersenghi J Phys A ’20 
Damian et al. NeurIPS ’23



ICA is a hard problem in high dimensions.

So what happens on real images with 
deep neural networks? 



What about real data?
FastICA fails on real images at linear sample complexity

FastICA, logcosh activation,  
, d=D (left) vs. d=32 (right)n = 2D 9vs. d=32 (right)



Reduce and conquer
Reduce the dimension, conquer with ICA
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Run FastICA in  
low dimensions

- Success reveals something about the structure of the images 

- Linear Sample complexity can be proven in “subspace model” 

Project inputs  
to principal  
subspace
Hyvärinen ‘99

Loss in  
high dimensions!



What about real data?
A mixed matrix-tensor model

Ricci, Bardone, SG — in prep. 10

Prove recovery by analysing GD in  
finite-dimensional sub-space spanned by PCs

xμ = ∑
r

β1g
μ
r ur + β2hμv + wμβ2hμv∑

r

β1g
μ
r ur

gμ ∼ 𝒩(0,1),gμ
r hμ = ± 1hμ

wμ ∼ 𝒩 (0,1 − β2vv⊤)

Subspace model (rank-1 in Bardone & SG, ICML ’24)

Mixed matrix-tensor models

- Richard & Montanari (NeurIPS ’14).     observe  and ,  

- Sarao Mannelli et al. (’19a, ‘19b, ’20)  observe  and  

- Asymmetric case: Tabanelli et al. arXiv:2506.02664

X = βv⊗p + Z y = βx + z β > 0
M ∝ vv⊤ + ZM T ∝ v⊗p + ZT



What about (shallow) neural networks?
Learning distributions of increasing complexity
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A. Ingrosso

vs.

Ingrosso & SG — PNAS 2022

𝔼z±
k z±

l = exp (− |k − l | /ξ±)
Translation-invariance:

x±
j ∝ erf (gz±

j )
Sharp edges: 
(from saturating non-linearity)

t ≈ 10¹ t ≈ 10⁴

- Early in training: neurons ≈ Fourier modes, doing PCA 
- Later in training, neurons become localised, doing ≈ ICA 

Sequential  
learning !



What about deep networks?
Learning distributions of increasing complexity
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What about deep networks?
Learning distributions of increasing complexity
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CIFAR10

trained on
CIFAR10

DenseNet121 on CIFAR10

Gaussian

Refinetti, Ingrosso, SG — ICML 2023
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Gaussian CIFAR10

DenseNet121 on CIFAR10

CIFAR10 

Gaussian

trained on

Refinetti, Ingrosso, SG — ICML 2023

What about deep networks?
Learning distributions of increasing complexity
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Refinetti, Ingrosso & SG — ICML ’23

DenseNet121 on CIFAR10 Vanilla Transformer on WikiText101

Rende, Gerace, Laio, SG 
NeurIPS ‘24

CIFAR10 

Gaussian

trained on

What about deep networks?
Learning distributions of increasing complexity



̂y(x) = σ(w ⋅ x)

Spherical perceptron

w0 ∼ Unif (𝕊d−1)
w̃t = wt−1 − δ

d ∇sph(ℒ(w, (xt, yt))
wt =

w̃t

| | w̃t | |
.

xμ = β1gμu + S (β2hμv + wμ)β2hμvβ1gμuMixed cumulant model: xμ = wμ vs.

ℒ(w, (x, y)) = 1 − yf(w, x) .

Correlation loss

nv ≫ d3

Connected subspaces accelerate neural networks 
Rigorous analysis for a spherical perceptron

Bardone, SG — ICML 2024 14

Two overlaps: mu = u ⋅ w mv = v ⋅ w

Disconnnected subspaces:
Ben Arous et al. ‘21

m′￼v(t) ≈ 4c04m3
v

Correlated latents (=connected subspaces)

m′￼v(t) ≈ c11mu + 4c04m3
v nv ≫ d



Relation to teacher-student models
Staircases, staircases everywhere!

y*(x) = h1(m ⋅ x) + h2(u ⋅ x) + h4(v ⋅ x)

Teacher-student model: x ∼ 𝒩 (0,1d) Abbé ’21, ’22, ’23; Jacot et al. ’21; 
Boursier et al. ’22; Dandi et al. ’23; 
Damian et al. ’23; Bietti et al. ’23; 
Mousavi-Hosseini et al. ’24 

15

- Generative exponent [Damian et al. ’24] of any polynomial is at most 2, so  can 
be learnt at linear sample complexity (e.g. by repeating batches [Dandi et al. ’24]) 

- The generative exponent of the spiked cumulant model is at least four,  
since for binary labels, there is no transform T such that .

y*(x)

𝔼 [h1/2/3(x) |T(y)] ≠ 0

Key difference between spiked cumulants and teacher-student:



Concluding perspectives

• Neural networks learn features from 
higher-order correlations. 

• ICA as a model system reveals the crucial role 
of sequential learning to access HOCs. 

• We find similar behaviour in deep CNNs. 

• Key challenge: towards more realistic models 
of unsupervised learning?!
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How do neural networks learn from their data, efficiently?
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Connected subspaces accelerate neural networks 
Two-layer neural networks exploit correlations between subspaces

Mean only
tested on

Mean + cov

Full data

Gaussian equiv.

Independent latents

13

Classification task: xμ = wμ vs. xμ = β0m + β1gμu + β2hμv + wμβ2hμvβ1gμuβ0m

Three spikes: vu,m, Two latent variables: gμ ∼ 𝒩(0,1), hμ = ± 1

Bardone, SG — ICML 2024



Connected subspaces accelerate neural networks 
Two-layer neural networks exploit correlations between subspaces

Mean only
tested on

Mean + cov

Full data

Gaussian equiv.

Correlated latents hμ = sgn (gμ)Independent latents

13

Classification task: xμ = wμ vs. xμ = β0m + β1gμu + β2hμv + wμβ2hμvβ1gμuβ0m

Three spikes: vu,m, Two latent variables: gμ ∼ 𝒩(0,1), hμ = ± 1

Bardone, SG — ICML 2024



̂y(x) = σ(w ⋅ x)

Spherical perceptron

w0 ∼ Unif (𝕊d−1)
w̃t = wt−1 − δ

d ∇sph(ℒ(w, (xt, yt))
wt =

w̃t

| | w̃t | |
.

xμ = β1gμu + S (β2hμv + wμ)β2hμvβ1gμuMixed cumulant model: xμ = wμ vs.

ℒ(w, (x, y)) = 1 − yf(w, x) .

Correlation loss

Two overlaps: αu = u ⋅ w, αv = v ⋅ w

Correlated latents: gμ ∼ 𝒩(0,1); hμ = sgn (gμ)

{
·αu(t) = 2c20αu + c11αv + O(η2)
·αv(t) = c11αu + 4c04α3

v − 2c20α2
uαv + O(η4)c11αu

For correlated latents , the coefficient  and 𝔼λν > 0 c11 > 0 nv ≫ d

Cumulant spike only: gμ = 0; hμ = ± 1 ⇒ nv ≫ d3

Ben Arous et al. ‘21
nv ≫ d3
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Connected subspaces accelerate neural networks 
Rigorous analysis for a spherical perceptron

Bardone, SG — ICML 2024


