Feature learning from
non-Gaussian inputs

Sebastian Goldt (SISSA, Trieste)

joint work w/ Lorenzo Bardone and Fabiola Ricci

Statistical Physics & machine learning: moving forward — Cargese, august 2025



What do neural networks learn

from their inputs?



Neural networks learn stereotypical features

First-layer filters learnt from ImageNet resemble Gabor filters across architectures
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Convergence of teatures across architectures —
inputs drive feature learning!



What is in an image?

A Fourier perspective

Xw = A exp (i)



What is in an image?

A Fourier perspective

X = Ageexp (i)
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What matters in an image?

Let's do an experiment to find out! (Piotrowski & Campbell '82)

Xw = Ageexp (i) X = Ao exp (i) X = Ageexp (i) X = Apeexp (i)

Higher-order correlations are perceptually more important!

Oppenheim & Lim (1981); Piotrowski & Campbell (1982); Wichmann et al. (2005)



Higher-Order Correlations

HOCs shape neural representations

First layer filters relate to strongly non-Gaussian directions
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Neural networks learn features from
non-Gaussian input fluctuations.

How can we analyse this?



A simpler model for learning

Finding “interesting” projections of data

Given a dataset 9 = {x;, X, ..., X, } of d-dimensional,

w* 1= argmax,, _; kg G(W - x)

zero-mean inputs with identity covariance

Principal components (PCA) G(s) = s Independent Components (ICA) G(s) = o =12

Pearson 1901 Comon '94; Bell & Sejnowski '95; Oja & Hyvarinen ‘00
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Translation-invariance of images The most non-Gaussian projections

=> Fourier components yield CNN-like filters !



Independent Component Analysis

Fundamental limits of ICA

A synthetic data model gives fundamental insights

Spiked cumulant model: xt = pgta + wt gh==1, w'~ . (0,1-puu’)
® bx=0"" pcais A Expg =0 Goal of ICA
o [xx = 51']‘ useless! I:I XX, — Exx, Ex X [3] (u®4)zjkf = finding u!

How to analyse this problem?

L(w) = _P[G(W - x)| = _PO[G(W - X)C(v - x)] e Algorithmic threshold: n > d?
(Auddy & Yuan ‘24, Annals Apl Prob '24
Likelihood ratio f(S) L dP (S) Szekely, Bardone, Gerace & SG, NeurlPS '24)
- dP,

e How do algorithms actually perform?



Feature learning from non-Gaussian inputs:
the case of Independent Component Analysis in high dimensions
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FastICA is slow in high dimensions

The most popular ICA algorithm needs a lot of data

ICA model: xt = fotua + w gh==x1, wi~F ((),1 +,BuuT)
2
W =—[xG’w_ -x)] — E [G”W_ X)) |w,_q, GS:Z_e—S/Z
FastICA Algorithm: { Y ~( 1 O = Bl G- 0wy (5)
we = willlwll. G(s) := 1/alog cosh(as)
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FastICA is slow in high dimensions

The most popular ICA algorithm needs a lot of data . — n=d
FastICA as a full-batch tixed point iteration: e
analyse in the giant steps framework! N |—F + + 4

(Ba et al. '22; Damian et al. ‘24; Dandi et al. '24; Ben Arous et al. '21) FastiCA steps

T 1 = n=d3**%,6=0.2
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Speeding up ICA with SGD

Smoothing the landscape is the key!

Vanilla SGD (Ben Arous et al. JMLR '21):

SGD on a smoothed loss

Biroli, Cammarota, Ricci-Tersenghi J Phys A '20
Damian et al. NeurlPS 23
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Speeding up ICA with SGD

Smoothing the landscape is the key!

Vanilla SGD (Ben Arous et al. JMLR 21): recovers the spike Nnn = Q(d3 ]()g2 d) steps.

SGD on a smoothed loss W+ Az
o o . , , — [ : A>0
Biroli, Cammarota, Ricci-Tersenghi J Phys A '20 gl[G(W xX)] = ; MWG ( x) =
Damian et al. NeurlPS '23 HW T /IZH
Generalised ODE for the overlap: o m(?)
m (t) — — Smoothed online SGD

(accounting for data/contrast fn mismatch) dkik—kg‘/z

- = \/anilla online SGD

* Speed-up requires fine-tuning of “activation” function!

e Optimal choice for spiked cumulant is He,(s).
Matches LDLR bound!

o] o I T T T T I !
o stability vs. speed! 0 J > 3 4 5



|CA is a hard problem in high dimensions.

So what happens on real images with
deep neural networks?



What about real data?

FastICA fails on real images at linear sample complexity
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Reduce and conquer

Reduce the dimension, conquer with ICA

Run FastICA in
low dimensions

Project inputs
to principal
subspace

Hyvarinen ‘99

Loss In

high dimensions! 0 5 10 15 20
FastICA steps

- Success reveals something about the structure of the images

- Linear Sample complexity can be proven in “subspace model”



What about real data?

A mixed matrix-tensor model

Subspace model (rank-1 in Bardone & SG, ICML '24)

g}/:l ~ '/V(Oal)a h’u — S 1

xH = ‘u, + fohf'v + wh
Z :Blgr r ﬂZ W’u - ./V (0,1 _ﬂQVVT)
r

Prove recovery by analysing GD in
finite-dimensional sub-space spanned by PCs

Mixed matrix-tensor models

- Richard & Montanari (NeurlPS '14). observe X = fv®P +Zandy=fx+z, > 0

- Sarao Mannelli et al. (‘19a, “19b, '20) observe M x vv' + Zyyand T p®P 4 Zr
- Asymmetric case: Tabanelli et al. arXiv:2506.02664

Ricci, Bardone, SG — in prep.
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What about (shallow) neural networks?

Learning distributions of increasing complexity
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Translation-invariance:

t7iz = exp (— |k = 1]|/EF)
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X o ert ( gzj—>
t= 101 t= 10°

- Early in training: neurons ~ Fourier modes, doing PCA Sequential
learning !

- Later in training, neurons become localised, doing = ICA

Ingrosso & SG — PNAS 2022 11



What about deep networks?

Learning distributions of increasing complexity

12



What about deep networks?

Learning distributions of increasing complexity
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What about deep networks?

Learning distributions of increasing complexity
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What about deep networks?

Learning distributions of increasing complexity
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Connected subspaces accelerate neural networks

Rigorous analysis for a spherical perceptron

Spherical perceptron Mixed cumulant model: x$ =wt wvs. X'=[fgl'u+S§ (ﬁzh”v + W”)

. Two overlaps: m =u-w m,=V-w
y(x) = o(w - x)

Disconnnected subspaces: ‘\
Wy ~ Unif (Sd_l) Ben Arous et al. ‘21 8
i ° 3 Y|
Wz‘ — Wt—l — E Vsph(°?("‘/a (xta yt)) m‘,/(t) AV 4‘604_’7/1«‘:}3 nV >> d ,‘ﬁ\.
W, I
CORRTIAT
Correlated latents (=connected subspaces) " o
2
: / ~ 4 3 S9N
Correlation loss m(t) =~ cyym, + 4cym, n,>d » P
|
Fw.(x.y) = 1 = yfw.). -

Bardone, SG — ICML 2024 14



STRAIRGASES

Relation to teacher-student models ‘&

Staircases, staircases everywhere! smnenssswmmmﬂ

Abbé ‘21, '22, '23: Jacot et al. '21;
Boursier et al. '22;: Dandi et al. '23:
Damian et al. '23: Bietti et al. '23:
Mousavi-Hosseini et al. ‘24

Teacher-student model: x ~ (O,ld) 3.0f
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Key difference between spiked cumulants and teacher-student:

- Generative exponent [Damian et al. '24] of any polynomial is at most 2, so y*(x) can

be learnt at linear sample complexity (e.g. by repeating batches [Dandi et al. '24])

- The generative exponent of the spiked cumulant model is at least four,

since for binary labels, there is no transform T such that E [h1/2/3(x) | T(y)] #* 0.
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Concluding perspectives

How do neural networks learn from their data, efficiently?

® Neural networks learn features from
higher-order correlations.

® |CA as a model system reveals the crucial role
of sequential learning to access HOCs.

® \We find similar behaviour in deep CNN:s.

® Key challenge: towards more realistic models
of unsupervised learning?!
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Connected subspaces accelerate neural networks

Two-layer neural networks exploit correlations between subspaces

Classification task: X = wH s X' = fom + [, g"a + " v + wH

Three spikes: m, u, v wo latent variables: g/’t ~ N(0,1), ht==x1

Independent latents
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Connected subspaces accelerate neural networks

Two-layer neural networks exploit correlations between subspaces

Classification task: X = wH s X' = fom + [, g"a + " v + wH
Three spikes: m, u, v wo latent variables: g/ ~ #(0,1), ht==x1
Independent latents Correlated latents /1" = sgn (g” )
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Connected subspaces accelerate neural networks

Rigorous analysis for a spherical perceptron

Spherical perceptron Mixed cumulant model: x$ =wt wvs. X'=[fgl'u+S§ (ﬁzh”v + W”)
A Two overlaps: a,=u-w, a,=V-Ww
y(x) = o(w - x)

=
. 3 & (3
Cumulant spike only: gh=0, W==x1 = n>d \ﬁf *
Wy ~ Unif (gd_l) Ben Arous et al. ‘21 u\,
N 5
We=Wea—7 Vsph(g(wv (X, }’t))
o Correlated latents: gh ~ /(0,1); h*=sgn (g”)
AR
{c’xu(t) = 2¢5q, + ¢, + O(n?)
a (t) = ¢, a, + deg — 2co0a’a, + O(n?
Correlation loss 1) = end, Oy 20% % + O07) Qs ol
PLw,(x,y) =1 —yf(w,x). For correlated latents EAv > 0, the coetticient ¢y > 0 and n, > d ;}f:@r

Bardone, SG — ICML 2024



