Feature learning from non-Gaussian inputs

Sebastian Goldt (SISSA, Trieste)

joint work w/ Lorenzo Bardone and Fabiola Ricci

Statistical Physics & machine learning: moving forward — Cargèse, august 2025

What do neural networks learn from their inputs?

Neural networks learn stereotypical features

First-layer filters learnt from ImageNet resemble Gabor filters across architectures

AlexNet

Krizhevsky, Sutskever, Hinton (2012)

VGG-11

Guth & Ménard (2024)

DenseNet121

MLP mixer

Tolstikhin et al. NeurIPS '21

Convergence of features across architectures — inputs drive feature learning!

What is in an image?

A Fourier perspective

What is in an image?

A Fourier perspective

What matters in an image?

Let's do an experiment to find out! (Piotrowski & Campbell '82)

$$\tilde{X}_{kk'} = A_{kk'} \exp\left(i\phi_{kk'}\right)$$
 $\tilde{X}_{kk'} = A_{kk'} \exp\left(i\phi_{kk'}\right)$

$$\tilde{X}_{kk'} = A_{kk'} \exp\left(i\phi_{kk'}\right)$$

$$\tilde{X}_{kk'} = A_{kk'} \exp\left(i\phi_{kk'}\right)$$
 $\tilde{X}_{kk'} = A_{kk'} \exp\left(i\phi_{kk'}\right)$

$$\tilde{X}_{kk'} = A_{kk'} \exp\left(i\phi_{kk'}\right)$$

Higher-order correlations are perceptually more important!

Oppenheim & Lim (1981); Piotrowski & Campbell (1982); Wichmann et al. (2005)

HOCs shape neural representations

First layer filters relate to strongly non-Gaussian directions

10⁵

10³

SGD steps

 10^{1}

Neural networks **learn features** from **non-Gaussian** input fluctuations.

How can we analyse this?

A simpler model for learning

Finding "interesting" projections of data

Given a dataset $\mathcal{D} = \{x_1, x_2, ..., x_n\}$ of d-dimensional, zero-mean inputs with identity covariance

$$w^* := \operatorname{argmax}_{|w|=1} \mathbb{E}_{\mathscr{D}} G(w \cdot x)$$

Principal components (PCA)

Pearson 1901

$$G(s) = s^2$$

Independent Components (ICA)

Comon '94; Bell & Sejnowski '95; Oja & Hyvärinen '00

$$G(s) = s^4 e^{-3^2/2}$$

Translation-invariance of images => Fourier components

The most non-Gaussian projections yield CNN-like filters!

Fundamental limits of ICA

A synthetic data model gives fundamental insights

Spiked cumulant model:

$$x^{\mu} = \beta g^{\mu} \mathbf{u} + \mathbf{w}^{\mu}$$

$$x^{\mu} = \beta g^{\mu} \mathbf{u} + \mathbf{w}^{\mu}$$
 $g^{\mu} = \pm 1$, $\mathbf{w}^{\mu} \sim \mathcal{N} \left(0, 1 - \beta \mathbf{u} \mathbf{u}^{\mathsf{T}} \right)$

$$\square \quad \mathbb{E} x_i x_j x_k x_{\ell} - \mathbb{E} x_i x_j \mathbb{E} x_k x_{\ell} [3] \propto (u^{\otimes 4})_{ijk\ell}$$

= finding **u**!

How to analyse this problem?

$$\mathscr{L}(w) := \mathbb{E}_{\mathbb{P}}[G(w \cdot x)] = \mathbb{E}_{\mathbb{P}_0}[G(w \cdot x)\ell(v \cdot x)]$$

Likelihood ratio
$$\ell(s) := \frac{d\mathbb{P}}{d\mathbb{P}_0}(s)$$

- Algorithmic threshold: $n \gtrsim d^2$ (Auddy & Yuan '24, Annals Apl Prob '24 Szekely, Bardone, Gerace & SG, NeurIPS '24)
- How do algorithms actually perform?

Feature learning from non-Gaussian inputs: the case of Independent Component Analysis in high dimensions

Fabiola Ricci ¹ Lorenzo Bardone ¹ Sebastian Goldt ¹

ICML 2025 arXiv:2503.23896

FastICA is slow in high dimensions

The most popular ICA algorithm needs a lot of data

ICA model:

$$x^{\mu} = \beta g^{\mu} \mathbf{u} + \mathbf{w}^{\mu}$$

$$x^{\mu} = \beta g^{\mu} \mathbf{u} + \mathbf{w}^{\mu}$$
 $g^{\mu} = \pm 1$, $\mathbf{w}^{\mu} \sim \mathcal{N} \left(0, 1 + \beta \mathbf{u} \mathbf{u}^{\mathsf{T}} \right)$

FastICA Algorithm:
$$\begin{cases} \widetilde{w}_t &= \mathbb{E}_{\mathscr{D}}[x\,G'(w_{t-1}\cdot x)] - \mathbb{E}_{\mathscr{D}}[G''(w_{t-1}\cdot x)]w_{t-1}, \\ w_t &= \widetilde{w}_t/\|\widetilde{w}_t\|. \end{cases}$$

$$G(s) := -e^{-s^2/2}$$

 $G(s) := 1/a \log \cosh(as)$

FastICA is slow in high dimensions

The most popular ICA algorithm needs a lot of data

FastICA as a full-batch fixed point iteration: analyse in the *giant steps* framework!

(Ba et al. '22; Damian et al. '24; Dandi et al. '24; Ben Arous et al. '21)

Theorem (informal).

Take $n=d^{\vartheta}$ samples. After one step of FastICA, the overlap α scales as

$$\vartheta \le 3$$

$$\alpha^2 = O\left(\frac{1}{d}\right)$$

$$3 < \vartheta < 4$$

$$\alpha^2 = o(1)$$

$$4 \le \vartheta$$

$$\alpha^2 = 1 - o(1)$$

Speeding up ICA with SGD

Smoothing the landscape is the key!

Vanilla SGD (Ben Arous et al. JMLR '21):

recovers the spike in $n = \Omega(d^3 \log^2 d)$ steps.

SGD on a smoothed loss

Biroli, Cammarota, Ricci-Tersenghi J Phys A '20 Damian *et al.* NeurIPS '23

$$\mathcal{L}_{\lambda}[G(w \cdot x)] := \mathbb{E}_{z \sim \mu_{w}} G\left(\frac{w + \lambda z}{\|w + \lambda z\|} \cdot x\right) \qquad \lambda \geq 0$$

Speeding up ICA with SGD

Smoothing the landscape is the key!

Vanilla SGD (Ben Arous et al. JMLR '21):

recovers the spike in $n = \Omega(d^3 \log^2 d)$ steps.

SGD on a smoothed loss

Biroli, Cammarota, Ricci-Tersenghi J Phys A '20 Damian *et al.* NeurIPS '23

$$\mathcal{L}_{\lambda}[G(w \cdot x)] := \mathbb{E}_{z \sim \mu_{w}} G\left(\frac{w + \lambda z}{\|w + \lambda z\|} \cdot x\right) \qquad \lambda \ge 0$$

Generalised ODE for the overlap: (accounting for data/contrast fn mismatch)

$$m'(t) = \frac{m(t)}{d^{\frac{k_1^* - k_2^*}{2}}}$$

- Speed-up requires fine-tuning of "activation" function!
- Optimal choice for spiked cumulant is $He_4(s)$. Matches LDLR bound!
- Trade-off: stability vs. speed!

ICA is a **hard** problem in high dimensions.

So what happens on **real images** with deep **neural networks**?

What about real data?

FastICA fails on real images at linear sample complexity

FastICA, logcosh activation, n = 2D, d=D (left) vs. d=32 (right)

Reduce and conquer

Reduce the dimension, conquer with ICA

Project inputs to principal subspace Hyvärinen '99

- Success reveals something about the structure of the images
- Linear Sample complexity can be proven in "subspace model"

What about real data?

A mixed matrix-tensor model

Subspace model (rank-1 in Bardone & SG, ICML '24)

$$\mathbf{x}^{\mu} = \sum_{r} \beta_1 g_r^{\mu} \mathbf{u}_r + \beta_2 h^{\mu} \mathbf{v} + \mathbf{w}^{\mu}$$

$$g_r^{\mu} \sim \mathcal{N}(0,1), \quad h^{\mu} = \pm 1$$

 $\mathbf{w}^{\mu} \sim \mathcal{N}\left(0,1 - \beta_2 \mathbf{v} \mathbf{v}^{\mathsf{T}}\right)$

Prove recovery by analysing GD in finite-dimensional sub-space spanned by PCs

Mixed matrix-tensor models

- Richard & Montanari (NeurlPS '14). observe $X = \beta v^{\otimes p} + Z$ and $y = \beta x + z$, $\beta > 0$
- Sarao Mannelli et al. ('19a, '19b, '20) observe $M \propto vv^{\top} + Z_M$ and $T \propto v^{\otimes p} + Z_T$
 - Asymmetric case: Tabanelli et al. arXiv:2506.02664

What about (shallow) neural networks?

Learning distributions of increasing complexity

A. Ingrosso

Translation-invariance:

$$\mathbb{E}z_k^{\pm}z_l^{\pm} = \exp\left(-\left|k - l\right|/\xi^{\pm}\right)$$

VS.

Sharp edges:

(from saturating non-linearity)

$$x_j^{\pm} \propto \operatorname{erf}\left(gz_j^{\pm}\right)$$

 $t \approx 10^{1}$

 $t \approx 10^4$

- **Early** in training: neurons ≈ Fourier modes, doing **PCA**
- Later in training, neurons become localised, doing ≈ ICA

Sequential learning!

Learning distributions of increasing complexity

Learning distributions of increasing complexity

DenseNet121 on CIFAR10

Learning distributions of increasing complexity

DenseNet121 on CIFAR10

Learning distributions of increasing complexity

DenseNet121 on CIFAR10

Refinetti, Ingrosso & SG — ICML '23

Vanilla Transformer on WikiText101

Rende, Gerace, Laio, SG NeurIPS '24

Rigorous analysis for a spherical perceptron

Spherical perceptron

$$\begin{cases} w_0 \sim \text{Unif}\left(\mathbb{S}^{d-1}\right) \\ \tilde{w}_t = w_{t-1} - \frac{\delta}{d} \nabla_{\text{sph}}\left(\mathcal{L}(w, (x_t, y_t))\right) \\ w_t = \frac{\tilde{w}_t}{||\tilde{w}_t||} \,. \end{cases}$$

Correlation loss

$$\mathcal{L}(w,(x,y)) = 1 - yf(w,x).$$

Mixed cumulant model:

$$\mathbf{x}^{\mu} = \mathbf{w}^{\mu}$$
 vs. $\mathbf{x}^{\mu} = \beta_1 g^{\mu} \mathbf{u} + S \left(\beta_2 h^{\mu} \mathbf{v} + \mathbf{w}^{\mu} \right)$

Two overlaps:

$$m_u = u \cdot w \qquad m_v = v \cdot w$$

Disconnnected subspaces:

Ben Arous et al. '21

$$m_{\nu}'(t) \approx 4c_{04}m_{\nu}^3$$

$$n_v \gg d^3$$

Correlated latents (=connected subspaces)

$$m_{\nu}'(t) \approx c_{11}m_u + 4c_{04}m_{\nu}^3$$

$$n_v \gg d$$

Relation to teacher-student models

Staircases, staircases everywhere!

Teacher-student model:
$$x \sim \mathcal{N}(0, 1_d)$$

$$y^*(x) = h_1(m \cdot x) + h_2(u \cdot x) + h_4(v \cdot x)$$

Abbé '21, '22, '23; Jacot et al. '21; Boursier et al. '22; Dandi et al. '23; Damian et al. '23; Bietti et al. '23; Mousavi-Hosseini et al. '24

Key difference between spiked cumulants and teacher-student:

- Generative exponent [Damian et al. '24] of any polynomial is at most 2, so $y^*(x)$ can be learnt at linear sample complexity (e.g. by repeating batches [Dandi et al. '24])
- The generative exponent of the **spiked cumulant model** is at least four, since for binary labels, there is no transform T such that $\mathbb{E}\left[h_{1/2/3}(x) \mid T(y)\right] \neq 0$.

Concluding perspectives

How do neural networks learn from their data, efficiently?

 Neural networks learn features from higher-order correlations.

• ICA as a model system reveals the crucial role of sequential learning to access HOCs.

- We find similar behaviour in deep CNNs.
- Key challenge: towards more realistic models of unsupervised learning?!

Acknowledgements

Lorenzo Bardone (SISSA)

Fabiola **Ricci** (SISSA)

European Research Council Established by the European Commission

Two-layer neural networks exploit correlations between subspaces

Classification task:

$$\mathbf{x}^{\mu} = \mathbf{w}^{\mu}$$

$$x^{\mu} = w^{\mu}$$
 vs. $x^{\mu} = \beta_0 m + \beta_1 g^{\mu} u + \beta_2 h^{\mu} v + w^{\mu}$

Three spikes:

m, u, v

Two latent variables: $g^{\mu} \sim \mathcal{N}(0,1), \quad h^{\mu} = \pm 1$

$$g^{\mu} \sim \mathcal{N}(0,1),$$

$$h^{\mu} = \pm 1$$

Two-layer neural networks exploit correlations between subspaces

Classification task:

$$\mathbf{x}^{\mu} = \mathbf{w}^{\mu}$$

$$x^{\mu} = w^{\mu}$$
 vs. $x^{\mu} = \beta_0 m + \beta_1 g^{\mu} u + \beta_2 h^{\mu} v + w^{\mu}$

Three spikes:

Two latent variables: $g^{\mu} \sim \mathcal{N}(0,1), \quad h^{\mu} = \pm 1$

$$g^{\mu} \sim \mathcal{N}(0,1),$$

$$h^{\mu} = \pm 1$$

Rigorous analysis for a spherical perceptron

Spherical perceptron

$$\begin{cases} w_0 \sim \text{Unif}\left(\mathbb{S}^{d-1}\right) \\ \tilde{w}_t = w_{t-1} - \frac{\delta}{d} \nabla_{\text{sph}}\left(\mathcal{L}(w, (x_t, y_t))\right) \\ w_t = \frac{\tilde{w}_t}{||\tilde{w}_t||} \,. \end{cases}$$

Correlation loss

$$\mathcal{L}(w,(x,y)) = 1 - yf(w,x).$$

Mixed cumulant model:

Ben Arous et al. '21

$$\mathbf{x}^{\mu} = \mathbf{w}^{\mu} \quad \text{vs.} \quad \mathbf{x}^{\mu} = \beta_1 g^{\mu} \mathbf{u} + S \left(\beta_2 h^{\mu} \mathbf{v} + \mathbf{w}^{\mu} \right)$$

$$\alpha_u = u \cdot w, \quad \alpha_v = v \cdot w$$

$$g^{\mu}=0; \quad h^{\mu}=\pm 1 \quad \Rightarrow \quad n_{\nu}\gg d^3 \quad | \Box |$$

$$g^{\mu} \sim \mathcal{N}(0,1); \quad h^{\mu} = \operatorname{sgn}\left(g^{\mu}\right)$$

$$\begin{cases} \dot{\alpha}_{u}(t) = 2c_{20}\alpha_{u} + c_{11}\alpha_{v} + O(\eta^{2}) \\ \dot{\alpha}_{v}(t) = c_{11}\alpha_{u} + 4c_{04}\alpha_{v}^{3} - 2c_{20}\alpha_{u}^{2}\alpha_{v} + O(\eta^{4}) \end{cases}$$

For correlated latents $\mathbb{E}\lambda\nu>0$, the coefficient $c_{11}>0$ and $n_{\nu}\gg d$

